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On the basis of the continuous analog of Newton’s method, a method of numerical 
solving of Sturm-Liouville’s problem is suggested, which has some advantages compared 
with the hitherto known ones. This method is used for calculating the binding energies 
of all the vibrational states of the mesic molecules ppp, ddp and ttp. In particular, one 
has first succeeded in calculating the binding energy of the highly excited level with 
L = 1, u = 1 of the mesic molecule ddp which is important for interpreting experi- 
mental data. 

1. INTRODUCTION 

The calculation of the binding energy of mesic molecules has been performed 
in many papers which may be divided into two groups: variational calculations [l] 
and adiabatic calculations [2]. The variational methods appear to be more 
preferable for the calculation of the ground state energies. The adiabatic calcu- 
lations are more usual and, thus, are uniform for both the ground and excited 
states. In the present paper all the vibrational states of the mesic molecules ppp, 
ddp, and ttp are calculated taking into account adiabatic corrections to nuclear 
motion. 

In the adiabatic approximation the problem of the calculation of the binding 
energy of the mesic molecules with equal nuclei reduces to finding the eigenvalues 
eLu for the Schroedinger equation describing the molecule in a vibrational stat ZJ 
with orbital momentum L [2] 

d2y$R) + 2M [ EL9 - (Q(R) - Eg(co)) - f - Lg&2”] XLdR) = 0, 
(1) 

where 

2M= 244l+P - 1 
2P ’ 

E,(R) = E,(R) + M&,(R) 
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FIG. 1. Diagrams of the symmetric term for the two-center problem W, = E,,(R) + l/R and 
the diagonal element f&(R) by means of which the effective potential q(R) of the boundary value 
problem (3a) is formed. 

M1 , TV are the masses of the nuclei and the p meson, respectively, E,(R) is the sym- 
metric term of the two-center problem [3,4], K,,(R) is the diagonal matrix element 
of the nuclear motion operator over the wave functions of the symmetric state of 
the two-center problem [5]. The diagrams of the functions W,(R) = E,(R) + l/R 
and K,,(R) are given in Fig. 1. 

After introducing the notations 

Y(R) = XLtm 

V(R) = a?T&(R) - Eg(co) + f + LFMy , 

A= -2M~~u, R = x, and q(x) = -2MV(x), 

Eq. (1) assumes the standard form of the Sturm-Liouville problem 

-$f$ + (q(x) - A) y(x) = 0 

(2) 

on the interval 0 < x < co with boundary conditions 

y(0) = y(c0) = 0. WI 

The potentials V(R) = -q(R)/2M for the &,u molecule are given in Fig. 2. 
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There is no unified method for solving the Sturm-Liouville problem (3). The 
latter becomes more complicated when the potential q(x) is given numerically. 
As a rule, when solving the problem (3), we fist calculate the eigenvalues of h and 
only afterwards do we find the corresponding eigenfunctions [6]. Such a procedure 
leads, in a number of cases, to large errors. Therefore, it is more reasonable to use 
the algorithms in which the eigenvalue h and the corresponding eigenfunction 

lev 

FIG. 2. Diagrams of the functions VYR) = -(1/2M)q(R) which correspond to the physical 
potentials of the molecules a?& in the state with angular momenta L = 0 and L = 1. 

y(x) of the problem are calculated simultaneously, as a single unknown z = [A, y(x)] 
of a certain nonlinear functional equation q(z) = 0. Such a method is especially 
effective for many physical problems when there is much a priori information on 
the qualitative and, in part, quantitative behaviour of the solution. 

2. THE IDEA OF THE M~HOD 

In the present paper we have developed and realized an algorithm for solving 
the Strum-Liouville problem on the basis of the continuous analog of the Newton 
method. 

The method suggested is based on the ideas of papers [7,8] and is, to a large 
extent, validated in papers [9, lo]. Such an approach makes it possible to increase 
the number of computational schemes and is close to the idea of “invariant 
imbedding” [Ill. The main idea of the method is as follows. The differential 
equation 
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together with the boundary conditions on the interval a < x < b 

qJ’2’o, Y) = VW + f@, 4 Y(4 = 0, W 

P’@, Y> = y’(b) + g(k b) y(b) = 0 (4c) 

is supplementarily defined by the normalization condition 

c$~‘(X, y) = j-b y”(x) dx - 1 = 0. 
a (44 

Then the problem (3) for the eigenvalues is a nonlinear equation of the form 

944 = 0, (5) 

where the operator v means the set of the operators 9) K) defined by the relations (4) 
and the argument z = [A, y(x)] belongs to the direct product of the space of real 
numbers R and the space of the functions doubly differentiable on the interval 
[u, b] : z E R x C2[u, b]. The operator v transforms the elements of the space Z to 
the elements of the space W = R3 x C[u, b] under certain restrictions on q(x). 

We suppose that Eq. (5) has at least one solution z*. Let us introduce a con- 
tinuous parameter 0 < t < 03 in such a manner that the relation 

is valid. This equation has the integral ~(z(t)) = v(zJ e-t from which it is seen 
that rg(z(t)) -+ 0, as t -+ 03. 

Equation (6) is linear in z’ and can be presented in the form 

z’ = - t~‘(z>l-’ dz>, 40) = zo , (7) 

which is the continuous analog of Newton’s method [7]. With certain restrictions 
on the form of the operator 9 and the choice of the initial approximation z, , the 
solution z(l) for Eq. (7) exists for all t and the solution z(t) converges to the desired 
solution of the eigenvalue problem z* = [A*, y*(x)]. 

The appropriate theorem has been proved in paper [9]. 

THFDREM. Let Eq. (6) have a unique solution z* in the open region D of space Z. 
We suppose that in D there exist continuous Frkhet derivutives cp’(z), q~“(z) and also 
the inverse operator [#(z)]“, which satisjies the inequality 

11bP’(41” II G B 

Then there exists the sphere S: II z - z* Ij < E belonging to the region D, such that 
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for arbitrary z,, ES the differential equation (7) has a unique solution z(t) for 
O<t<ooand 

ki 11 z* - z(t)11 = 0. 

The fact that the solutions for Eq. (7) are asymptotically stable allows to expect 
that the difference methods and, in particular, Euler’s method for differential 
equations should be numerically stable. We notice that the similar method 
developed in paper [12] and based on the method of continuous parameter 
suggested by Davidenko [13] does not poses such an asymptotic stability. We 
consider the detailed comparative analysis of the problems of stability of various 
calculation schemes to be the subject of particular interest, therefore in what 
follows we restrict ourselves to describing the calculation algorithm which realizes 
the suggested principle. 

3. REALIZATION OF THE METHOD 

We introduce the parameter t on which the solutions z(t) = [A(t), y(x, t)] for 
Eq. (7) depend continuously. We define the functions p(t) and V(X, t) by the relations 

/4t) = W + (W) W, 
4x, t> = @/WY(X, 0. 

(8) 

By assuming yF(h(t), y(x, t)) s y(*)(t) the equations of the system (6) can be 
rewritten in the developed form 

@G t> + M.4 - WI e, t> = -qN) - Nt) - p(f)1 Y(X, 0, 
4h 0 + f(W), 4 46 t> = - @Yt) + [W - pO)l@/~~)f(~(t), a), (9) 

W, t> + g@(t), b) UP, 0 = - v”3’(t) + Nt) - ,4WP4 g(W, b) 

(the prime denotes everywhere the derivative @/ax)), 

2 jb y(x, t) u(x, t) dx = -rpJ4’(t) 
a (10) 

with the initial conditions 

zo = no > Yowl, wo = x0 9 Y(X, 0) = YOW (19 

from a certain vicinity of the desired solution z* = [A*, y*(x)]. 
Following Euler’s method of the solution for the system (9-11) we divide the 
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semiaxis 0 < t < cc by nodal points tk (k = 0, 1,2,...) with step 7% . In this 
case 

tk+l = tk + rk . (12) 

By introducing the notations 

& = ,&k)’ u,(x) = u(x, t,), qp = p(tk), 

Ykb) = Y(x, tk), fk = f(h(tk), a), gk = &(fk), b) 
(124 

and replacing the relations (8) by their difference analogs 

x k+l = Ak + Tk(~k - xk), 

Yk+ltx) = Y,(‘> + T,$~)lx), 

@a) 

we are led to a boundary value problem for the functions &(x) on the interval 
ia, 4: 

u;<x> + [q(x) - &I ‘,&) = -v;’ - (‘, - i$) Y,(x>, 

vk’@) + g,U,@) = -P))&’ + (A, - r-L,&a&,aA), 

2 j * y,(x) uk(x) dx = - p):‘. 
a 

(104 

For known hk and Y&C) the solution for the problem (9a) is a single-parameter 
(with respect to the parameter ,..&k) family of functions and can be presented in the 
form 

uk(x) = ilk + I*.kU2k(X)* (13) 

The functions uak(x) (01 = 1,2; k = 1,2, 3...) are the solutions for the boundary 
value problem 

v:k(x) + [dx) - xkl &k(x) = Pcsk(X), 

&k(a) +fk%k(a) = &k , 

v;k@) + gk&k@) = hk 5 

(14) 
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where 

After the functions v&x) have been calculated from these equations, we determine 
the parameter plc from the relation 

pk = [; - ;/abyn2b)dx - Iab Yk(X) hkb) d”] [Jh” yk(x) u2k(X) dx]-l~ t16) 

which follows from the normalization condition (lOa) and the definition (13). 
Then the Values Of tk+, , X,+,(x) and y,+,(x) are found by Eqs. (12) and (8a). For 
given initial values of h, and yO(x) the process of calculation of hl, and JJ~(X) for 
k = 1,2,3... has, thus, been defined completely. 

The scheme considered is discrete only with respect to the variable t. In order 
to construct the complete discrete scheme it is necessary to approximate the 
boundary value problems (14) by their finite-difference analogues for each t = tk . 
If for each tk we conserve the same network of nodes with respect to variable x 
then the scheme in question may be interpreted as a result of application of the 
continuous analog of Newton’s method to the difference equation, which 
approximates the problem (3) in questions, with subsequent replacement of the 
continuous parameter t by a discrete one. In the case considered this scheme is a 
generalization of the algorithm proposed by Kalitkin [8] and may be validated 
with the aid of the results of his paper. The grounds for the method of finite 
differences of solving the Sturm-Liouville problem are also given in Refs. [6, 141. 
The alternating direction implicit method [15] is very effective for the realization 
of these schemes. 

We note that this approach allows a direct generalization to the case of the 
coupled systems of differential equations. 

4. ACCOUNT OF PHYSICAL PECULIARITIES OF THE PROBLEM 

The given algorithm may be realized only on the finite interval [a, b] of the change 
of the independent variable x, while the initial physical problem is defined on a 
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semiinfinite interval [0, a). However, knowing the particular features of the 
problem in question, it is possible to take into account this difference. 

For R > 1 the following asymptotic expansion [16] 

E,(R) - E,(m) + f g _ 5 R-4 - y R-% - +! R-7 _ F R-8 

1 + ; R-1 - ‘8! R-2 - !$ R-3) (17) 

holds. For sufficiently large R it is possible to neglect the exponentially small term 
and then the expressions for the potential q(x) and the solutions y(x) in the 
asymptotic domain take the form 

q(x) = 2M 2 c&c-*, 
.9=2 

y(x) = ctdnz i f&x-“, (18) 
?l=O 

where 

1 a,=l, a,+,=- --ml 
( 

%a 
2z/h n+l ) R’ 

- 294 i w,+2-s, 
01*- s=o 

9 
cp UL + 1) = - 

2M 
’ c3 = 0, c4 = -, 

4 
cg = 0, 

15 213 7755 
cg=-, 2 c,=-, 4 cg=64. 

The constant c is determined from the condition of sewing the asymptotic solution 
Y(X) and the solution ylc(x) at the point x = b. 

The boundary conditions (4b) and (4~) and the normalization condition (4d) are 
modified as follows 

pyx, y) = y(0) = 0, (2Ob) 

@‘(A, y) = j-” y”(x) dx - 1 + AZ = 0, LIZ = Ibrn y”(x) dx. (204 
0 

The correction AZ can be found by numerical integration using the analytic 
representation (18) for the function y(x) in the asymptotic domain. Other necessary 
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changes in Eqs. (10) and (16) are quite obvious and can be realized by taking into 
account the equality 

E”“k(X) = (plc - AJJ $ . (21) 

When integrating the system (14) numerically, it is convenient to take as the initial 
approximation z,, = [&, , J+,(X)] the solution for the problem (3) which approxi- 
mates the true solution by a certain analytic function. The potentials given in 
Fig. 2 are well approximated by Morse’s potential [17] with the aid of the three 
parameters R, , D, and ol: 

V(R) = ~[~-2~(R--Rcu) _ 2e-=+R~)~, (22) 

where R, is the R-value for which the potential V(R) reaches its minimum 
V(R,J = min V(R) = -D. The parameter a is determined from the condition 

(23) 

The eigenvalue h, and the corresponding eigenfunction rV(x) with the number 
of zeros u are expressed as [ 171 

A, = 2Me, = 2MD l- 

for v = 0 

for u = 1 

ye(x) = [LU/T(~S)]~/~ e--(/258, 

yu(x) = [a(2s + l)/P(2s)]“2 e-E/2@ (1 - A). 

The following notion is introduced 

5. SOME DE-IXLS OF THE CALCULATION PROCEDURE 

(24) 

The suggested algorithm of solving the Sturm-Liouville problem can be easily 
realized on computers. A program for calculating the mesic molecule energy levels 
is written in FORTRAN and is realized on the CDC-1604 A computer. The linear 
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boundary value problems (14) for the functions Q&V) for each value of the 
parameter tk which corresponds to a kth iteration of the solution zk in the initial 
approximation z, are solved with the aid of the alternating direction implicit 
method [15] on a uniform network of nodes x, E [0, b] with step h. 

The transition to the next iteration zk+r = [X,,, , JJ~+~(x)] is realized by 
formulas (8a). The convergence of the process is seen from the decrease of the 
quantity: 

6, = m,ax I &Yhk , ~,(x,))l (26) 

where r&’ is the difference operator 

9fV~ Y(X,>) = mY(.Q + h) - 2Y&J + Y(X, - 41 + k&J - 4 Y&J 
(27) 

which approximates Eq. (4a) with the accuracy of the order O(P). The process 
finishes if 6, < E, where E is small enough. In choosing the E value one should bear 
in mind the estimates of Ref. [14]. 

The convergence of the calculation procedure depends considerably on the choice 
of the dynamic parameter TV (the integration step in Euler’s method). Satisfactory 
results were obtained when ?-k was chosen to be proportional to the ratio 6,-r& . 
For E = 10-4, h = 0.0125 and b = 20 to find the solution z* M zk of the initial 
problem about ten iterations are needed (k M 10). The convergence depends 
weakly on the choice of the initial approximation y,,(x) which can be taken in the 
form of a sinusoid for 0 < x < 2R, (see (22)) and a decreasing exponential for 
x > 2R,. 

Some calculation aspects for the case of the ddp molecule in states with orbital 
moment L = 1 and quantum numbers u = 0 and v = 1 are presented in more 
detail in Table I. 

With the given values of E, h and b, for N= 6 in expansions (17) the computation 
time on CDC-1604 A is about 2 min. By varying N, decreasing h and increasing 
b in the limits allowed by the memory of the computer we see that with the above 
values of h, b, and N the relative accuracy is about 1O-s. 

To verify additionally the accuracy of the method the Sturm-Liouville problem 
(3) has been solved for the same E, h, and b for the case of Morse’s potential (22) 
the shape of which for 01 = 0.67; R, = 2.15; D = 0.106 is rather close to that of 
the potential V(R) for the case of the pp,u mesic molecule in the state with orbital 
momentum L = 0. The value h, = 0.4353 obtained by the formula (24) for the 
ground state (a = 0) is found to be in good agreement with the value X = 0.4348 
obtained from Eqs. (4) for & = 5.10 --4. Thus, 6, , in the order of magnitude, is 
equal to the absolute error of calculation of the eigenvalue h and may serve as a 
measure of calculation accuracy. 
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TABLE I0 

Levels of 
ddp molecule L=l v=o L=l v=l 

k 8 9 

&I 60.5 39.7 

6, 5.6 x 1O-6 9.0 x 10-6 

Al 0.7703 3.26 x 10-a 

As 0.7474 2.24 x 10-a 

a The given characteristics of the calculation process correspond to the following choice of the 
values l = 10-4, h = 0.0125, b = 20, N = 6, Q = (Sk-,/8k) Q+ , q, = 0.1. The initial approxima- 
mation z0 = [&, , y&x)] and the corresponding value of 8, are calculated by Eqs. (22), (24), 
and (26) for the following values of the parameters of the Morse potential for the molecule a?& 
in the state with orbital moment L = 1: R. = 2.25, D = 8.24 x 10-*, OL = 0.697. 

The main restriction on the calculation accuracy is defined by the magnitude of 
of the step h of the difference scheme since the order of approximation of the 
difference operator (27) is 0(h2). Difference schemes of higher accuracy are dis- 
cussed in Refs. [8, 141. 

6. THE RESULTS OF CALCULATIONS 

In Table II we give the results of calculations of the binding energy cLu of the 
mesic molecules ppp, ddp and tfp in all vibrational quantum states. 

With a given orbital momentum L the energy levels for the mesic molecules are 
labeled by the vibrational quantum number v which is equal to the number of 
zeros of the eigenfunction J&X). 

For the molecule ppp two levels with quantum numbers L = 0, v = 0 and 
L = 1, v = 0 are possible. For the ddp molecule five levels: two (u = 0 and 
v = 1) in the state with L = 0 two (v = 0 and v = 1) in the state with L = 1, 
and one level with quantum numbers L = 2, u = 0. For the tt,u molecule six 
quantum levels are possible: two levels (V = 0 and u = 1) in each of the states 
with orbital momenta L = 0 and L = 1 and one (a = 0) level in each of the states 
withL = 2andL = 3. 

It follows from Table II that our calculations are in satisfactory agreement with 
all recent variational calculations. A special attention should be paid to the cal- 
culation of the binding energy of the mesic molecule &j~ in the state with L = 1, 
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TABLE II 

Binding Energy q”(eV) of the Mesic Molecules0 

Mesic 
molecule 

L=O L=l L=2 L=3 Method of 
calculation 

v=o v=l v=o v=l v=o v=o 

PPP 253” - 107.23” - - - Variational 

Ml = 1836.109 248 - 101 - - Present article 

ddll 324.2” 32.7b 226.55” - - - Variational 

Ml = 3670.398 323 32.9 224 0.7 83.5 - Present article 

ttlL 361.2b 75b 288.72” - - - Variational 
Ml = 5496.753 361 81.4 288 43.1 171 46.7 Present article 

a The values Mx and p = 206.769 are given in electronic masses m, on the basis of the data 
of Taylor et al. [ZO] and Selinov [20]. The binding energies q. are given in electron volt. The 
transition coefficient p from the eigenvalues of h (3) to the q,(eV) values is cL,(eV) = j3A, p = 
4Ml(p/(2M, + P))~ * 27.21165 eV. 

b B. R. CARTER, Phys. Rev. 165 (1968), 139. 
c A. HALPERN, Phys. Rev. 135A (1964), 34. 

FIG. 3. The wave functions x~~ of the molecule ddp in the state with angular momentum 
L = 1. The function xlo(R) corresponds to the ground vibrational state (v = 0, cl0 = 224 eV) 
the function xll(R) to the excited state (v = 1, cX1 = 0.7 eV). 



CONTINUOUS ANALOG OF NEWTON’S METHOD 13 

u = 1. The existence of this level was supposed already by Beliaev et al., Zel’dovich 
and Gershtein [2] and has recently been proved in Ref. [18]. The calculated value 
l 11 = 0.7 eV is in satisfactory agreement with that which is needed for ddp 
formation probability measurements to be explained [19]. The diagrams of the 
wave functions xLU(R) E Y&C) for the L = 1, u = 0 and L = 1, ZJ = 1 states of 
the ddp mesic molecule are given in Fig. 3. 

In the calculations the values of E,(R) and K,,(R) are used which are found with 
the accuracy IO-l1 and IO-‘, respectively, by means of the algorithm realized in 
the papers [4] and [5]. 

The adiabatic calculations are known to contain an error which is due to an 
approximate determination of the potential V(R). In the present paper the adiabatic 
corrections of the first order (1/2M) K,,(R) to the term E,(R) have been taken into 
account. As Table II shows when these corrections are taken into account the 
adiabatic calculations coincide with the recent variational calculations within 
~10-~. As it should be expected, the larger the nuclear mass of mesic molecules 
the better the agreement. A more detailed comparison has been performed in the 
author’s paper [21]. 
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